At the beginning of this month, Xiaopeng Automobile also announced that its follow-up models Xiaopeng P7 rear-wheel drive standard endurance Zhixiang version, Zhijun version, Xiaopeng G3 460 c Yuexiang version are equipped with lithium iron phosphate batteries from the Ningde era, which not only improves the safety of the vehicle Full, and the price is also cheaper than that of ternary lithium batteries, both of which are reduced by 20,000 yuan.
The most expensive power battery, the market quotation of lithium iron phosphate battery cell group in 2019 is about 0.7 yuan/Wh, and the ternary lithium battery of the same specification is 0.9 yuan/Wh, which is more than 20% more expensive. Specifically for a car, the difference is at least 9,000 yuan, and most models The profit is not that much.
Secondly, the service life is different, three elementsThe battery decay of lithium batteries is faster than that of lithium iron phosphate batteries, which is also the number of charges and discharges. Lithium iron phosphate batteries may only decay by 20%, and ternary lithium batteries will decay by 30% or more.
Because lithium batteries cost relativelyIt is high, but its weight is relatively low, and it has a long charging and discharge life. It is easy to maintain, and it is more convenient for the later maintenance of the vehicle. Therefore, pure electric vehicles generally use lithium batteries. As of August 2019, there are two types of lithium batteries on the market, namely lithium metal batteries and lithium-ion batteries.
Although the cost of lithium batteries is relatively high, the weight is quite low and the life of charging and discharging is long, so it is easy to maintain and the later maintenance of the car is also quite convenient. Of course, most pure electric vehicles are basically lithium batteries. As of August 2019, there are two types of lithium batteries on the market, namely lithium metal batteries and lithium-ion batteries.
The reasons why high-end cars use ternary lithium batteries are: better low-temperature discharge performance, higher energy density, and higher charging efficiency. Low-temperature discharge performance is betterWell, compared with other batteries, ternary batteries are more suitable for use at low temperatures, and low temperatures will not affect the performance of the battery.
1, 4 lithium series batteries, such as lithium-ion batteries, lithium polymer batteries and lithium-sulfur batteries. 5 Manganese dioxide series batteries, such as zinc-manganese batteries, alkaline manganese batteries, etc. 6 Air (oxygen) series batteries, such as zinc air batteries, aluminum air batteries, etc.
2. The main types of power batteries for new energy vehicles are lithium-ion batteries, nickel-metal hydride batteries, fuel cells, lead-acid batteries and sodium-sulfur batteries. Lithium-ion power battery: has the following advantages: high working voltage; larger specific energy; small size; light weight; long cycle; low self-discharge rate; no memory effect;No pollution and so on.
3. Well, the current power batteries are roughly as follows, namely ternary lithium batteries, lithium iron phosphate batteries, lithium cobalt batteries, nickel-metal hydride batteries and solid-state batteries. Among them, new energy trams generally use ternary lithium batteries and lithium iron phosphate batteries, which is the so-called "double hegemony".
4. Classification of new energy vehicle power batteries. New energy vehicle batteries can be roughly divided into two categories, one is lithium iron phosphate battery (LFP) and the other is lithium cobaltate battery (NCA, NCM). Lithium iron phosphate battery (LFP): The positive electrode material of this battery is composed of lithium iron phosphate, which is highly safe and not easy to explode and pollute the environment.
The development prospect of new energy lithium battery is good. Reason: New energy vehicles drive the rise of lithium-ion battery packs: Benefiting from the continuous rise of new energy vehicles, the lithium-ion battery industry has ushered in a new round of development opportunities.
In fact, the future development direction of battery technology depends on many factors, including market demand, energy policy, materials science, process technology, etc. In the field of electric vehicles, the development direction of battery technology mainly includes the following aspects: First, it is necessary to improve energy density and power density.
The development prospects and trends of lithium batteries are as follows: the future will develop rapidly. Lithium elctrification, energy saving and high speed are all the development characteristics of the lithium battery industry. As a very important field in the field of new energy, the lithium power industry has also become a new investment focus in the manufacturing field.The production process is becoming more and more mature.
Global trade data integration services-APP, download it now, new users will receive a novice gift pack.
At the beginning of this month, Xiaopeng Automobile also announced that its follow-up models Xiaopeng P7 rear-wheel drive standard endurance Zhixiang version, Zhijun version, Xiaopeng G3 460 c Yuexiang version are equipped with lithium iron phosphate batteries from the Ningde era, which not only improves the safety of the vehicle Full, and the price is also cheaper than that of ternary lithium batteries, both of which are reduced by 20,000 yuan.
The most expensive power battery, the market quotation of lithium iron phosphate battery cell group in 2019 is about 0.7 yuan/Wh, and the ternary lithium battery of the same specification is 0.9 yuan/Wh, which is more than 20% more expensive. Specifically for a car, the difference is at least 9,000 yuan, and most models The profit is not that much.
Secondly, the service life is different, three elementsThe battery decay of lithium batteries is faster than that of lithium iron phosphate batteries, which is also the number of charges and discharges. Lithium iron phosphate batteries may only decay by 20%, and ternary lithium batteries will decay by 30% or more.
Because lithium batteries cost relativelyIt is high, but its weight is relatively low, and it has a long charging and discharge life. It is easy to maintain, and it is more convenient for the later maintenance of the vehicle. Therefore, pure electric vehicles generally use lithium batteries. As of August 2019, there are two types of lithium batteries on the market, namely lithium metal batteries and lithium-ion batteries.
Although the cost of lithium batteries is relatively high, the weight is quite low and the life of charging and discharging is long, so it is easy to maintain and the later maintenance of the car is also quite convenient. Of course, most pure electric vehicles are basically lithium batteries. As of August 2019, there are two types of lithium batteries on the market, namely lithium metal batteries and lithium-ion batteries.
The reasons why high-end cars use ternary lithium batteries are: better low-temperature discharge performance, higher energy density, and higher charging efficiency. Low-temperature discharge performance is betterWell, compared with other batteries, ternary batteries are more suitable for use at low temperatures, and low temperatures will not affect the performance of the battery.
1, 4 lithium series batteries, such as lithium-ion batteries, lithium polymer batteries and lithium-sulfur batteries. 5 Manganese dioxide series batteries, such as zinc-manganese batteries, alkaline manganese batteries, etc. 6 Air (oxygen) series batteries, such as zinc air batteries, aluminum air batteries, etc.
2. The main types of power batteries for new energy vehicles are lithium-ion batteries, nickel-metal hydride batteries, fuel cells, lead-acid batteries and sodium-sulfur batteries. Lithium-ion power battery: has the following advantages: high working voltage; larger specific energy; small size; light weight; long cycle; low self-discharge rate; no memory effect;No pollution and so on.
3. Well, the current power batteries are roughly as follows, namely ternary lithium batteries, lithium iron phosphate batteries, lithium cobalt batteries, nickel-metal hydride batteries and solid-state batteries. Among them, new energy trams generally use ternary lithium batteries and lithium iron phosphate batteries, which is the so-called "double hegemony".
4. Classification of new energy vehicle power batteries. New energy vehicle batteries can be roughly divided into two categories, one is lithium iron phosphate battery (LFP) and the other is lithium cobaltate battery (NCA, NCM). Lithium iron phosphate battery (LFP): The positive electrode material of this battery is composed of lithium iron phosphate, which is highly safe and not easy to explode and pollute the environment.
The development prospect of new energy lithium battery is good. Reason: New energy vehicles drive the rise of lithium-ion battery packs: Benefiting from the continuous rise of new energy vehicles, the lithium-ion battery industry has ushered in a new round of development opportunities.
In fact, the future development direction of battery technology depends on many factors, including market demand, energy policy, materials science, process technology, etc. In the field of electric vehicles, the development direction of battery technology mainly includes the following aspects: First, it is necessary to improve energy density and power density.
The development prospects and trends of lithium batteries are as follows: the future will develop rapidly. Lithium elctrification, energy saving and high speed are all the development characteristics of the lithium battery industry. As a very important field in the field of new energy, the lithium power industry has also become a new investment focus in the manufacturing field.The production process is becoming more and more mature.
Agricultural machinery HS code lookups
author: 2024-12-24 00:07WTO harmonization and HS codes
author: 2024-12-23 22:44Furniture trade (HS code ) insights
author: 2024-12-23 22:43Top trade data APIs for developers
author: 2024-12-23 22:38Industry-specific import regulation data
author: 2024-12-23 21:41HS code-based scenario planning for exports
author: 2024-12-24 00:06Export subsidies linked to HS codes
author: 2024-12-23 23:57Latin American HS code alignment
author: 2024-12-23 23:48HS code mapping for re-importation
author: 2024-12-23 23:10Comprehensive supplier audit data
author: 2024-12-23 22:31254.73MB
Check883.97MB
Check329.76MB
Check535.65MB
Check287.11MB
Check338.58MB
Check236.62MB
Check175.74MB
Check886.88MB
Check673.59MB
Check955.11MB
Check226.32MB
Check492.27MB
Check969.15MB
Check283.39MB
Check999.95MB
Check365.45MB
Check797.49MB
Check533.29MB
Check717.83MB
Check664.42MB
Check786.76MB
Check812.43MB
Check525.81MB
Check463.89MB
Check367.51MB
Check858.69MB
Check555.26MB
Check168.84MB
Check433.63MB
Check292.54MB
Check122.67MB
Check945.48MB
Check314.29MB
Check386.27MB
Check451.44MB
CheckScan to install
Global trade data integration services to discover more
Netizen comments More
249 HS code trends in textiles and apparel
2024-12-23 23:04 recommend
779 HS code mapping to trade agreements
2024-12-23 22:39 recommend
343 How to measure supplier performance
2024-12-23 22:23 recommend
1448 Global trade agreement analysis
2024-12-23 21:54 recommend
2564 Import data by HS code and country
2024-12-23 21:34 recommend