Liquid hydrogen has a large calorific value. When the same mass, it emits more heat than other fuel combustion, which can make the rocket achieve a large initial speed, so liquid hydrogen should be selected as the fuel of the rocket engine. Chemically speaking, the energy density (energy per unit weight) of liquid hydrogen is high.
So liquid hydrogen is used as a propellant. Therefore, hydrogen has the advantage of being a fuel: it burns a lot of heat, and the product is pollution-free water;It can be made of water, and water can be generated by combustion, which can be regenerated.
High propulsion performance: Liquid hydrogen has excellent propulsion performance. The combustion combination of liquid hydrogen and liquid oxygen produces a very high exhaust speed, which is required to propel the rocket. High exhaust speed means that the rocket can break away from the earth's gravity at a higher speed, enter orbit and explore space.
The reasons why liquid hydrogen is used as rocket fuel are as follows: liquid hydrogen has a high calorific value and can release more heat when it completely burns the same mass of hydrogen. Liquid hydrogen is an ideal energy material that can be used to obtain great energy efficiency and low-cost energy.
The advantage of liquid hydrogen is that it is completely pollution-free, and the product is water, and it has greater thrust and better economy. Liquid hydrogen is currently being studied in various countries, and its advantages are good safety and environmental protection.There is a kind of fuel agent called "malone" that is also commonly used, but it is both toxic and corrosive.
1. The rocket engine used in Saturn 5 rocket is the Saturn rocket engine (S-ICD S). The Saturn rocket engine is a high-performance liquid oxygen/liquid hydrogen rocket engine, which is the main power source used by the National Aeronautics and Space Administration (NASA) for the Saturn V rocket.
2. Its core stage is based on the design of the Long March 7 launch vehicle and the Long March 3A series. The first sub-stage of the rocket adopts two YF-100 liquid oxygen kerosene engines, and the second sub-stage of the rocket adopts the YF-75 liquid hydrogen liquid oxygen engine (dual machine).
3. The first sub-stage of the H2A rocket uses the LE-7A liquid hydrogen-liquid-oxygen main engine with a thrust of 110 tons, and the second sub-stage uses the LE-5B liquid hydrogen-liquid-oxygen main engine with a thrust of 137 kN.
4. The Chang'e-5 rocket uses a liquid-oxygen and liquid-hydrogen engine for the first-class core and the second-class core. Booster (first separation), using liquid oxygen + kerosene.
5. In terms of the engine, the SLS launch vehicle is equipped with a strong RS-25 liquid hydrogen liquid oxygen engine, but its cost is so high that a single launch mission of "Falcon 9" can be purchased! And one rocket needs to carry four, which can completely buy a "heavy Falcon" rocket.
In order to optimize the configuration of Saturn V, they adopted the F rocket engine and the new J2 rocket engine. The combination of the two lays the hardware foundation for its successful launch, and liquid hydrogen liquid oxygen propellant was used during the launch process, which also It laid the driving foundation for the successful launch of Mars 5.
F-1 rocket engine The world's largest thrust single-chamber liquid rocket engine developed by the United States is used for the Saturn 5 rocket, with a single thrust of 700 tons, using kerosene as fuel, and liquid oxygen as an oxidizing agent.
F-1 rocket engine is a kerosene liquid oxygen engine designed and manufactured by Rockdain in the United States, which is used for the first stage of Saturn V. F-1 is the single-nezzle liquid engine with the largest thrust in use.
Saturn 5 is currently the world's largest practical rocket, with a total weight of 3,038 tons, and the total thrust of the first-class engine is as high as 3,408 tons, which is equivalent to the total thrust of dozens of large passenger aircraft. The designer of Saturn 5 is Von Braun, a crazy scientist from Germany.
1. The advantages of using liquid hydrogen as aviation fuel are: liquid hydrogen has high energy density, zero emissions, fast filling, suitable for long-range flights, energy diversity and renewable energy matching, etc.
2. The biggest advantage is that its combustion product is water and does not pollute the environment. More heat is released during combustion, about 3 times that of gasoline of the same mass, 9 times that of alcohol, and 5 times that of coke. As an energy source, hydrogen has advantages that other energy sources do not have and is widely used.
3. The advantages of liquid hydrogen as an aviation fuel are mainly manifested in the following aspects: High energy density: Liquid hydrogen has a high energy density, which means that liquid hydrogen per unit mass contains more energy, so it can provide longer range and greater thrust.
1. The most obvious advantage of liquid oxygen kerosene engine is that it can be stored at room temperature. Compared with liquid hydrogen, hydrogen storage is safe and convenient, with high thrust, but cannot be reused. But as the first-stage fuel of the rocket, the situation is not good. This high-pressure posture is the main reason.
2. The specific calorific value of hydrogen must be greater than that of kerosene. After all, H2 is the lightest monomer. It can be said that liquid hydrogen liquid oxygen propellant consumes the same mass and provides the most energy! But if you put the thrust on the larger ratio, that belongs to the power size, just like saying which motor of the car has more horsepower.
3. Liquid engines can store propellants: kerosene, nitric acid, etc.Low-temperature propellant: liquid hydrogen, liquid oxygen, etc. Liquid engine two-component propellant single-component propellant oxidant: liquid oxygen, nitric acid, hydrogen peroxide, nitrogen tetraoxide, etc. Combustion agents: liquid hydrogen, kerosene, alcohol, dimethyl, methylene, etc.
4. The third stage of China's "Long March" No. 3 carrier rocket engine adopts liquid hydrogen and liquid oxygen as propellants, becoming the third country in the world to master the technology of controlling liquid hydrogen. Hydrogen is the most active of all elements, and it is extremely difficult to control the combustion of liquid hydrogen.
1. The advantages of liquid hydrogen as an aviation fuel are mainly manifested in the following aspects: high energy density: liquidHydrogen has a high energy density, which means that liquid hydrogen per unit mass contains more energy, so it can provide a longer range and greater thrust.
2. The advantages of using liquid hydrogen as aviation fuel are: liquid hydrogen has high energy density, zero emissions, fast filling, suitable for long-range flights, energy diversity and renewable energy matching, etc.
3. It can be made with widespread water as raw material. The biggest advantage is that its combustion product is water, which does not pollute the environment. More heat is released during combustion, about 3 times that of gasoline of the same mass, 9 times that of alcohol, and 5 times that of coke.
Trade data integration with ERP systems-APP, download it now, new users will receive a novice gift pack.
Liquid hydrogen has a large calorific value. When the same mass, it emits more heat than other fuel combustion, which can make the rocket achieve a large initial speed, so liquid hydrogen should be selected as the fuel of the rocket engine. Chemically speaking, the energy density (energy per unit weight) of liquid hydrogen is high.
So liquid hydrogen is used as a propellant. Therefore, hydrogen has the advantage of being a fuel: it burns a lot of heat, and the product is pollution-free water;It can be made of water, and water can be generated by combustion, which can be regenerated.
High propulsion performance: Liquid hydrogen has excellent propulsion performance. The combustion combination of liquid hydrogen and liquid oxygen produces a very high exhaust speed, which is required to propel the rocket. High exhaust speed means that the rocket can break away from the earth's gravity at a higher speed, enter orbit and explore space.
The reasons why liquid hydrogen is used as rocket fuel are as follows: liquid hydrogen has a high calorific value and can release more heat when it completely burns the same mass of hydrogen. Liquid hydrogen is an ideal energy material that can be used to obtain great energy efficiency and low-cost energy.
The advantage of liquid hydrogen is that it is completely pollution-free, and the product is water, and it has greater thrust and better economy. Liquid hydrogen is currently being studied in various countries, and its advantages are good safety and environmental protection.There is a kind of fuel agent called "malone" that is also commonly used, but it is both toxic and corrosive.
1. The rocket engine used in Saturn 5 rocket is the Saturn rocket engine (S-ICD S). The Saturn rocket engine is a high-performance liquid oxygen/liquid hydrogen rocket engine, which is the main power source used by the National Aeronautics and Space Administration (NASA) for the Saturn V rocket.
2. Its core stage is based on the design of the Long March 7 launch vehicle and the Long March 3A series. The first sub-stage of the rocket adopts two YF-100 liquid oxygen kerosene engines, and the second sub-stage of the rocket adopts the YF-75 liquid hydrogen liquid oxygen engine (dual machine).
3. The first sub-stage of the H2A rocket uses the LE-7A liquid hydrogen-liquid-oxygen main engine with a thrust of 110 tons, and the second sub-stage uses the LE-5B liquid hydrogen-liquid-oxygen main engine with a thrust of 137 kN.
4. The Chang'e-5 rocket uses a liquid-oxygen and liquid-hydrogen engine for the first-class core and the second-class core. Booster (first separation), using liquid oxygen + kerosene.
5. In terms of the engine, the SLS launch vehicle is equipped with a strong RS-25 liquid hydrogen liquid oxygen engine, but its cost is so high that a single launch mission of "Falcon 9" can be purchased! And one rocket needs to carry four, which can completely buy a "heavy Falcon" rocket.
In order to optimize the configuration of Saturn V, they adopted the F rocket engine and the new J2 rocket engine. The combination of the two lays the hardware foundation for its successful launch, and liquid hydrogen liquid oxygen propellant was used during the launch process, which also It laid the driving foundation for the successful launch of Mars 5.
F-1 rocket engine The world's largest thrust single-chamber liquid rocket engine developed by the United States is used for the Saturn 5 rocket, with a single thrust of 700 tons, using kerosene as fuel, and liquid oxygen as an oxidizing agent.
F-1 rocket engine is a kerosene liquid oxygen engine designed and manufactured by Rockdain in the United States, which is used for the first stage of Saturn V. F-1 is the single-nezzle liquid engine with the largest thrust in use.
Saturn 5 is currently the world's largest practical rocket, with a total weight of 3,038 tons, and the total thrust of the first-class engine is as high as 3,408 tons, which is equivalent to the total thrust of dozens of large passenger aircraft. The designer of Saturn 5 is Von Braun, a crazy scientist from Germany.
1. The advantages of using liquid hydrogen as aviation fuel are: liquid hydrogen has high energy density, zero emissions, fast filling, suitable for long-range flights, energy diversity and renewable energy matching, etc.
2. The biggest advantage is that its combustion product is water and does not pollute the environment. More heat is released during combustion, about 3 times that of gasoline of the same mass, 9 times that of alcohol, and 5 times that of coke. As an energy source, hydrogen has advantages that other energy sources do not have and is widely used.
3. The advantages of liquid hydrogen as an aviation fuel are mainly manifested in the following aspects: High energy density: Liquid hydrogen has a high energy density, which means that liquid hydrogen per unit mass contains more energy, so it can provide longer range and greater thrust.
1. The most obvious advantage of liquid oxygen kerosene engine is that it can be stored at room temperature. Compared with liquid hydrogen, hydrogen storage is safe and convenient, with high thrust, but cannot be reused. But as the first-stage fuel of the rocket, the situation is not good. This high-pressure posture is the main reason.
2. The specific calorific value of hydrogen must be greater than that of kerosene. After all, H2 is the lightest monomer. It can be said that liquid hydrogen liquid oxygen propellant consumes the same mass and provides the most energy! But if you put the thrust on the larger ratio, that belongs to the power size, just like saying which motor of the car has more horsepower.
3. Liquid engines can store propellants: kerosene, nitric acid, etc.Low-temperature propellant: liquid hydrogen, liquid oxygen, etc. Liquid engine two-component propellant single-component propellant oxidant: liquid oxygen, nitric acid, hydrogen peroxide, nitrogen tetraoxide, etc. Combustion agents: liquid hydrogen, kerosene, alcohol, dimethyl, methylene, etc.
4. The third stage of China's "Long March" No. 3 carrier rocket engine adopts liquid hydrogen and liquid oxygen as propellants, becoming the third country in the world to master the technology of controlling liquid hydrogen. Hydrogen is the most active of all elements, and it is extremely difficult to control the combustion of liquid hydrogen.
1. The advantages of liquid hydrogen as an aviation fuel are mainly manifested in the following aspects: high energy density: liquidHydrogen has a high energy density, which means that liquid hydrogen per unit mass contains more energy, so it can provide a longer range and greater thrust.
2. The advantages of using liquid hydrogen as aviation fuel are: liquid hydrogen has high energy density, zero emissions, fast filling, suitable for long-range flights, energy diversity and renewable energy matching, etc.
3. It can be made with widespread water as raw material. The biggest advantage is that its combustion product is water, which does not pollute the environment. More heat is released during combustion, about 3 times that of gasoline of the same mass, 9 times that of alcohol, and 5 times that of coke.
Exotic fruits HS code references
author: 2024-12-24 01:59Bio-based plastics HS code classification
author: 2024-12-24 01:36International trade event forecasts
author: 2024-12-24 01:30HS code research for EU markets
author: 2024-12-24 01:02Global trade flow optimization
author: 2024-12-24 03:08Metal scrap HS code classification
author: 2024-12-24 02:15Analytical tools for trade diversification
author: 2024-12-24 01:30HS code analytics for import quotas
author: 2024-12-24 00:48Commodity price indexing by HS code
author: 2024-12-24 00:28544.35MB
Check835.41MB
Check954.12MB
Check857.86MB
Check952.96MB
Check169.14MB
Check819.83MB
Check164.84MB
Check395.39MB
Check759.55MB
Check255.31MB
Check447.17MB
Check994.53MB
Check834.19MB
Check374.52MB
Check122.36MB
Check683.31MB
Check952.67MB
Check163.18MB
Check865.31MB
Check931.18MB
Check944.56MB
Check487.62MB
Check278.21MB
Check357.28MB
Check384.25MB
Check913.51MB
Check971.93MB
Check721.83MB
Check994.83MB
Check466.32MB
Check265.21MB
Check486.77MB
Check618.38MB
Check289.99MB
Check176.78MB
CheckScan to install
Trade data integration with ERP systems to discover more
Netizen comments More
1521 HS code-based re-exports in free zones
2024-12-24 03:11 recommend
2979 Real-time import quota alerts
2024-12-24 03:07 recommend
1384 HS code-based cargo insurance optimization
2024-12-24 02:35 recommend
1539 Africa import data trends
2024-12-24 01:52 recommend
2947 Trade data-driven credit insurance
2024-12-24 01:03 recommend